Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans
نویسندگان
چکیده
Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features-SRP RNA helix 8 and Srp54-in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development.
منابع مشابه
The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi.
Trypanosomes are protozoan parasites that have a major impact on human health and that of livestock. These parasites represent a very early branch in the eukaryotic lineage, and possess unique RNA processing mechanisms. The trypanosome signal recognition particle (SRP) is also unusual in being the first signal recognition particle described in nature to be comprised of two RNA molecules, the 7S...
متن کاملSmall ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle.
We have partially purified ribonucleoproteins (RNPs) from Schizosaccharomyces pombe and Yarrowia lipolytica with properties resembling those of mammalian signal recognition particle (SRP). In both species of yeast we have identified a single major RNA species in the size range of SRP RNA (256 nucleotides in S. pombe and 270 nucleotides in Y. lipolytica) present in postribosomal salt extracts of...
متن کاملDETECTION OF CRYPTOCOCCUS NEOFORMANS BY SEMINESTED PCR IN CEREBROSPINAL FLUID
ABSTRACT Life-threatening infections caused by the encapsulated fungal pathogen Cryptococcus neoformans have been increasing steadily over the past 10 years. Cryptococcus neoformans is recognized as the most frequent fungal infection of the central nervous system (CNS) in immunocompetent as well as immunocompromised patients. We report the development of a semi-nested- PCR-based assay for the ...
متن کاملLiterature-based gene curation and proposed genetic nomenclature for cryptococcus.
Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to...
متن کاملPurification, characterization, and cloning of the cDNA of human signal recognition particle RNA 3'-adenylating enzyme.
The 3'-terminal adenylic acid residue in several human small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA is caused by a post-transcriptional adenylation event (Sinha, K., Gu, J., Chen, Y., and Reddy, R. (1998) J. Biol. Chem. 273, 6853-6859). Using the Alu portion of the SRP RNA as a substrate in an in vitro adenylation assay,...
متن کامل